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The hypothesis that the S allele of the 5-HTTLPR serotonin transporter promoter region is associated with increased risk of
depression, but only in individuals exposed to stressful situations, has generated much interest, research and controversy since first
proposed in 2003. Multiple meta-analyses combining results from heterogeneous analyses have not settled the issue. To determine
the magnitude of the interaction and the conditions under which it might be observed, we performed new analyses on 31 data sets
containing 38 802 European ancestry subjects genotyped for 5-HTTLPR and assessed for depression and childhood maltreatment or
other stressful life events, and meta-analysed the results. Analyses targeted two stressors (narrow, broad) and two depression
outcomes (current, lifetime). All groups that published on this topic prior to the initiation of our study and met the assessment and
sample size criteria were invited to participate. Additional groups, identified by consortium members or self-identified in response
to our protocol (published prior to the start of analysis) with qualifying unpublished data, were also invited to participate. A uniform
data analysis script implementing the protocol was executed by each of the consortium members. Our findings do not support the
interaction hypothesis. We found no subgroups or variable definitions for which an interaction between stress and 5-HTTLPR
genotype was statistically significant. In contrast, our findings for the main effects of life stressors (strong risk factor) and 5-HTTLPR
genotype (no impact on risk) are strikingly consistent across our contributing studies, the original study reporting the interaction
and subsequent meta-analyses. Our conclusion is that if an interaction exists in which the S allele of 5-HTTLPR increases risk of
depression only in stressed individuals, then it is not broadly generalisable, but must be of modest effect size and only observable
in limited situations.

Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.44

INTRODUCTION
Depression negatively impacts health more than any other
chronic disease1 and is a leading cause of total disease burden
worldwide.2 Both genetic and environmental factors influence
depression;3 research on the aetiology of depression suggests
substantial heritability of 40–50%.3–8 Only recently have genome-
wide association studies begun to identify and replicate specific
loci associated with depression.9–11 The findings from these
studies suggest that (1) the effects of individual single-nucleotide
polymorphisms on major depressive disorder are small in
magnitude (requiring large sample sizes to detect) and (2)
candidate genes generally do not show evidence of association
in either genome-wide association studies or subsequent large-
scale meta-analyses.12 Gene-environment interactions (G × E)
(for example, genetic variants whose influence on depression risk
is only seen under specific environmental exposures) are one
mechanism that may contribute to the complexity of identifying
genetic associations with depression.13,14

A high profile report of a G × E effect on the development of
depression involves an interaction between stressful life events
and a functional, repeat length polymorphism (5-HTTLPR) in the
promoter region of the serotonin transporter gene (SLC6A4) on
chromosome 17.15 SLC6A4 encodes an integral membrane protein
that transports the neurotransmitter serotonin from synaptic
spaces into presynaptic neurons. The short (S) allele of 5-HTTLPR is
associated with less transcription of the serotonin transporter
compared with the long (L) allele.16,17 The report found that
carriers of either one or two copies of the S allele of 5-HTTLPR
were more likely to develop major depressive disorder, increased
depressive symptoms and suicidality in response to childhood
maltreatment or other stressful life events than were individuals
homozygous for the L allele. Furthermore, there was evidence of a
dose–response relationship, with risk of depression higher among
those with two copies of the S allele compared with individuals
with only one copy in the presence of stress. This G× E interaction
report has had considerable influence on the field; it has been
cited over 4000 times and over one hundred publications have
investigated the combined impact of 5-HTTLPR variation and
stress on risk for depression.
However, controversy over the robustness of this G× E

interaction continues. Although it is likely that G× E interactions
have an important role in disease, gene-by-environment studies

are challenged by the fact that statistical power to detect
interactions is typically less than for main effects.18 Furthermore,
many candidate gene main-effect association reports appear to be
false positives.19,20 As Duncan and Keller21 illustrate, this indicates
a need for caution regarding similar gene-by-environment
hypotheses. Several meta-analyses have examined the
5-HTTLPR-by-stress hypothesis, some providing support for the
interaction and others finding no evidence for it,22–25 with various
reasons proposed for the differences.21,24,26–28 Munafò et al.23

performed a literature-based meta-analysis, finding that only five
of the previously published studies (N= 2999) used phenotypes
and statistical models suitably comparable to the original study to
be included in the meta-analysis. This meta-analysis did not
support replication of the original finding. Risch et al.22 obtained
individual level data from 10 previously published studies
(N= 14 250) that met inclusion criteria and analysed the data
using a common model based on number of stressful life events.
This re-analysis found no evidence for either a main effect or
interaction effect of 5-HTTLPR on depression. Karg et al.24 (56
studies, N= 40 749) and Sharpley et al.25 (81 studies, N= 54 996)
both performed literature-based meta-analyses and reported
strong evidence for the interaction. Karg et al. and Sharpley
et al. criticised the previous analyses of Munafò et al. and Risch
et al. for being too restrictive in their inclusion of studies. The
approaches of Karg et al. and Sharpley et al., in turn, have been
criticised for combining P-values too broadly by allowing studies
with an opposite direction of effect to supply supportive evidence,
by including results from studies with incompatible statistical and
genetic models, and by including outcomes other than
depression.21 One key issue contributing to disputes over the
appropriateness of the prior reports and meta-analyses is the
heterogeneity of the studies.21 Heterogeneity pervades many key
factors in the prior analyses, including measurements of depres-
sion and stress, genetic ancestry and statistical models.
The primary objective of the current study was to increase

understanding of the role 5-HTTLPR might have as a moderator of
the response to stress as it impacts depression. To address the
complexities of this topic, we performed a collaborative
meta-analysis of data available from the participating studies,
both published and unpublished, using consistent de novo
analyses and variables determined a priori as described in the
pre-registered protocol.29 Our collaborative meta-analysis
strategy, wherein the consortium worked to harmonise
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phenotypes across studies, to prioritise specific analyses a priori,
and to apply identical de novo statistical analyses across all
participating studies, provided a balance between maximising
sample size while minimising heterogeneity. With this approach
and the large number of contributing samples, we are well
positioned to clarify the relationship between 5-HTTLPR, stress
and depression.

MATERIALS AND METHODS
Coordinated meta-analysis process
Recruitment of studies. Our goal was to include data from as many
pertinent studies as possible. However, analyses based on a small number
of samples can be statistically unstable, a problem that is exacerbated in
models involving multiple covariates and an interaction term. For these
reasons, we required participating studies to have genotyped at least 300
individuals for 5-HTTLPR and to have assessed depression and stress for
inclusion. Our recruitment started with groups that had previously
published on this topic who met our inclusion criteria. Additional groups,
identified through referral by existing consortium members and self-
referral based on the publication of our protocol, that had not published
on this topic, but which satisfied the inclusion criteria, were also invited to
participate. Supplementary Table S1 shows the data sets contributing to
this meta-analysis and how they relate to the Risch meta-analysis22 based
on primary data and the three literature-based meta-analyses of Munafò,
Karg and Sharpley.23–25 The studies contributing to each analysis varied,
with no study contributing results for every analysis. Here we cite the
foundational papers for the published studies that contributed results to
the project.30–58

Development of the protocol. The consortium developed an analysis
protocol that focused on data harmonisation and analysis prioritisation.
The decision was made to analyse childhood maltreatment as a source of
stress separately from other sources of life stress because childhood
maltreatment was assumed to precede the initial onset of depression and
to have a significant life-long impact.59–61 Life stressors other than
childhood maltreatment include such things as physical or sexual assault,
experience of life-threatening illness, loss of employment, loss of a spouse
or military conscription. When possible, analyses of other life stressors
included information on the timing of both the stressful events and the
depression assessment. For both childhood maltreatment and broadly
defined stress (defined as experiencing either childhood maltreatment or
other life stress), we examined histories of both lifetime depression and
current depression (at the time of assessment). In addition to stress
exposure and genotype, sex and age were used as covariates in our
analysis models. Subjects assessed between the ages of 21 and 30 were of
particular interest because of the possibility that the effect might be
strongest at these ages, which is a similar age range to the individuals in
the original report.15

All analyses were stratified by genetic ancestry. An outline of the primary
analyses can be found in Supplementary Table S2 and more detailed
descriptions of the planned analyses are provided in our published
protocol. All code and documents relevant for running the analyses and
meta-analysis are available in the public repository at https://github.com/
achorton/SD_5HTTLPR.

Analysis script. The coordinating center at Washington University in
St Louis developed data coding instructions (Supplementary Table S3)
based on the protocol and wrote an analysis script in R.62 Each
participating group reformatted their data for the analysis and executed
the analysis script locally on their own data. Results from these analyses,
including coefficients and standard errors for the primary and secondary
analyses as well as demographic information on the data set, were sent to
the coordinating center for meta-analysis.

Quality control assessments
Data coding: To ensure high quality data, the analysis team at
Washington University examined the submitted results for unusual values
(for example, unexpected allele frequencies, sex ratios, stress exposure
rates, rates of depression diagnoses, missing values). When unusual values
were found, the team worked with the data providers to ensure that the
final results accurately reflected their data.

Poorly fitted models: For results from a study to be included in a
particular meta-analysis, we required a minimum of 50 individuals to be
phenotyped for all variables in the model and that the resulting|β|o10
(corresponding to odds ratios (OR) between 1/20 000 and 20 000). Of the
results that satisfied both the minimum sample size and restriction on β, all
of the OR for the interaction terms were within the more reasonable range
of 1/20 to 20.

Meta-analysis
Meta-analyses of both the primary and secondary models were performed
using the R packages rmeta63 and metafor64 and SAS.65 Because of the
great variability of the data sources, all meta-analysis results are based on
random effects models even though there was little statistical evidence of
heterogeneity (see Supplementary Table S4).

Models analysed
In keeping with the original report,15 we tested the following main
hypothesis:
The risk of depression displays an interaction between 5-HTTLPR

genotype (LL, LS, SS) and exposure to stress: namely, the 5-HTTLPR
genotype shows no association to depression in individuals not exposed to
stress, but shows a dose–response effect (increased risk for more copies of
the S allele) in individuals exposed to stress. Our primary genetic coding
was additive in the number of copies of the S allele. Our template for
analysis is in the form

Depression ¼ ageþ sex þ stressþ geneþ gene´ stress

That is, for a dichotomous depression diagnosis,

logit Dð Þ ¼ β0 þ β1ageþ β2sex þ β3stressþ β4geneþ β5 gene´ stressð Þ:
Support for the hypothesis that S alleles are associated with an increased
risk for depression in stress-exposed individuals, but not in individuals who
are unexposed to stress, would be reflected by an OR41 for the
gene× stress interaction term. We examined this main hypothesis in
multiple settings in an attempt to determine a range of conditions under
which the effect might be found. We examined two types of stress
(childhood maltreatment, other life stress), two categories of depression
(depression during lifetime, current depression), and two age ranges
(all ages, young adults between the ages of 21 and 30).
Additional secondary hypotheses (for example, whether there is a main

effect of 5-HTTLPR variation on depression, whether the effect is observed
when using a dominant model (LL vs SL or SS), whether the effect would
be observed more strongly in a single sex) were also examined to improve
our understanding of this complex topic.
Our broadest analyses incorporated information from studies that could

not evaluate the full model (for example, a study with only female subjects,
a study with only stress-exposed subjects). These analyses performed
logistic regression on pooled genotype counts with contributing study
coded as a class variable in the model.
We used the results for the sex and stress terms as positive controls

because females and stress-exposed individuals are known to be at
increased risk for depression.

RESULTS
Our participating groups contributed a total of 43 165 subjects
genotyped for 5-HTTLPR and assessed for depression and
childhood maltreatment and/or other stressful life events. Of
these, 40 693 (94.3%) were of European ancestry, and after
harmonisation 38 802 subjects contributed to at least one analysis.
The non-European samples were distributed across five strata
(African, African-European Admixed, Asian, Pacific Islander and
Hispanic) and were not meta-analysed owing to small sample size.
Supplementary Table S5 provides key demographic information
about the data included in the meta-analyses (for example, N, S
allele frequency, frequencies of the key phenotypes). For each of
the data sets in Supplementary Table S5, Supplementary Table S6
lists whether the study design was cross-sectional or longitudinal,
the criteria used to diagnose depression, and the assessments
used to determine childhood maltreatment and other stressful life
events. Supplementary Table S7 provides information about
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additional data sets for which the script was run, but whose results
could not be included in any of the primary or secondary analyses.
Further details about each participating study can be found in
Supplementary Table S8.
Table 1 lists results from analyses across all-age groups based

on exposure to our two stressors of interest and diagnoses of our
two depression outcomes. As expected, our two positive control
factors, sex (ORo1, indicating that males are at lower risk) and
exposure to stress (OR41 indicating that exposure to stress
increases risk), each have strong, consistent and highly statistically
significant associations to diagnoses of depression whether the
diagnosis was for lifetime depression or current depression at the
time of assessment. We do not see a main-effect association
between number of copies of the S allele and depression in these
analyses, a finding that matches what we would expect from prior
reports, including the study originally reporting the interaction.15

Importantly, our meta-analyses do not support the hypothesis
that in subjects exposed to stress, carrying S alleles for 5-HTTLPR
confers a differential and increased risk for either lifetime or
current depression compared with the impact of carrying S alleles
in subjects who were not exposed to stress. In fact, when the
outcome is current depression, the point estimates for the interaction
terms are all in the direction opposite of the hypothesis.
The broad stress analyses examined stress resulting from either

childhood maltreatment or other life stress. The other life stress
exposure was examined in two ways: including only subjects for
whom the other life stress was documented to have occurred
within the five years prior to depression (5 years prior to
assessment if no depression) or including all subjects. The 5-year
threshold was chosen to match the original study design of Caspi

et al.15 Most of the studies contributing to this set of analyses
assessed stress over a shorter period, which is more in line with
current beliefs about the depressogenic effects of acute stressors
experienced in adulthood.
Forest plots illustrating how the individual studies contribute to

the first meta-analysis in Table 1 (outcome: lifetime depression
diagnosis; stress: exposure to childhood maltreatment) are shown
in Figure 1. The protective effect of being male (Figure 1a) and the
risk from stress (Figure 1b) are consistent across the individual
studies, and correspond to overall P-values of 1.4E�15 and 1.7E�8,
respectively. The lack of a main effect for the genetic variant in this
model is also consistent across the studies (Figure 1c). For the
interaction terms (childhood maltreatment exposure by number of
S alleles) (Figure 1d), the point estimates are scattered on both sides
of 1, and correspond to an overall P-value of 0.49.
Forest plots for these four key factors (sex, stress, gene and

gene× stress interaction) for the remaining analyses summarised in
Table 1 are given in Supplementary Figures S1 through S5. Forest
plots for the interaction terms for the remaining primary and
secondary analyses are given in Supplementary Figures S6 to S14.
Our other primary analyses and additional secondary analyses

examined questions of the strength, robustness and conditions
required to observe the hypothesised interaction. The results
presented in Table 1 reflect the general consensus of the findings.
None of the other primary analyses (results in Supplementary Tables
S9 through Supplementary Tables S12) or secondary analyses
(results in Supplementary Tables S13 through Supplementary Tables
S16) resulted in a statistically significant interaction.
We note that a closely related pair of young adult primary

analyses resulted in nominally significant interactions (P-value

Table 1. Meta-analysis of the impact of a stress-by-5-HTTLPR genotype interaction on depression based on new, uniform analyses of harmonised
dichotomous phenotypes in subjects of all ages

Depression Stress Studies Subjects Covariate OR 95% CI P-value

Childhood maltreatment
Lifetime Childhood maltreatment 18 21135 Sex 0.57 (0.50, 0.66) 1.4E�15

Stress 2.16 (1.65, 2.82) 1.7E�08
Gene 1.00 (0.95, 1.05) 0.95
Gene× stress 1.05 (0.91, 1.21) 0.49

Current Childhood maltreatment 13 13956 Sex 0.63 (0.51, 0.78) 3.5E�05
Stress 2.87 (1.87, 4.41) 1.5E�06
Gene 1.00 (0.92, 1.10) 0.97
Gene× stress 0.93 (0.76, 1.14) 0.50

Broad stress
Lifetime Broad stress (other life stress o5 years

prior or childhood maltreatment)
19 21938 Sex 0.58 (0.51, 0.67) 2.8E�15

Stress 1.82 (1.39, 2.39) 1.4E�05
Gene 1.00 (0.95, 1.06) 0.95
Gene× stress 1.06 (0.93, 1.20) 0.40

Current Broad stress (other life stress o5 years
prior or childhood maltreatment)

14 13835 Sex 0.63 (0.51, 0.78) 2.4E�05
Stress 3.19 (2.08, 4.91) 1.2E�07
Gene 1.01 (0.90, 1.12) 0.91
Gene× stress 0.92 (0.76, 1.11) 0.39

Lifetime Broad stress (other life stress or childhood
maltreatment)

21 28252 Sex 0.60 (0.53, 0.67) 6.5E�17
Stress 2.00 (1.56, 2.56) 3.8E�08
Gene 1.00 (0.94, 1.07) 0.92
Gene× stress 1.05 (0.94, 1.16) 0.38

Current Broad stress (other life stress or childhood
maltreatment)

17 17015 Sex 0.61 (0.49, 0.75) 5.1E�06
Stress 2.60 (1.62, 4.19) 7.8E�05
Gene 1.08 (0.92, 1.27) 0.35
Gene× stress 0.85 (0.68, 1.07) 0.17

In this table the childhood maltreatment analyses represent Primary Analysis 2Ai from the hierarchy presented in Supplementary Table S2. The broad
stress analyses represent Primary Analysis 2Bi from the hierarchy. Sex (female= 0; male= 1). Stress (not exposed= 0; exposed= 1) Gene (additive coding in
number of S alleles for 5-HTTLPR (LL= 0; LS= 1; SS= 2)) Broad stress does not require both stressors to be assessed. Model:
depression ¼ β0 þ β1 ageð Þ þ β2 sexð Þ þ β3 stressð Þ þ β4 geneð Þ þ β5 gene ´ stressð Þ. Depression variable: depression diagnosis. Stress variable: dichotomous stress
exposure. Age was not significant in any of the models.
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o0.05 before correction for multiple tests) in the hypothesised
direction (Supplementary Table S10b). Several factors caution
against placing too much confidence in these particular results: (i)
failure of positive control—the point estimate for exposure to
stress is protective for depression in these two analyses, counter
to our more robust analyses and to what would be expected; (ii)
they are not supported by closely related analyses—neither the
matching analysis based on childhood maltreatment only, nor the
other young adult analyses are even nominally significant
(Supplementary Tables S10b, S9), and the matching analysis with
subjects of all ages has the point estimates of effect in the
opposite direction (Supplementary Table S11b); (iii) statistical
instability—these two analyses only include a small number of
studies (3 and 4) with a relatively small total sample size (N= 583
and N= 1142), and are primarily driven by results from a single
study; and (iv) neither P-value survives correction for the number
of primary analyses performed.
Our protocol included secondary analyses to help determine

whether analytic refinements might strengthen the result and
explain why the hypothesised interaction had not heretofore been
found consistently. To reduce heterogeneity in depression
diagnosis, we examined the effect of restricting meta-analyses
to depression diagnoses based on Diagnostic and Statistical

Manual (DSM) or International Statistical Classification of Diseases
and Related Health Problems (ICD) criteria (Supplementary Table
S13). To determine whether the interaction might be predomi-
nantly expressed in only one sex, we performed meta-analyses
stratified by sex (Supplementary Table S14). We examined
alternative coding of the genetic effect (dominant, recessive,
haplotype) (Supplementary Table S15). Because the question of
causation depends on temporal order of events, we examined
whether the interaction would be stronger if the analyses were
restricted to data from longitudinal studies that had recorded
temporal order (Supplementary Table S16). In each case, there is a
trade-off between a possible gain in power due to a refined
phenotype versus a loss in power due to smaller sample size. For
these secondary analyses, we observed one nominally significant
interaction in the opposite direction from the hypothesis
(Supplementary Table S13, depression diagnosis restricted to
DSM or ICD, broad stress, current depression, OR= 0.74, P= 0.01),
and one nominally significant interaction in the hypothesised
direction (Supplementary Table S15b), S allele coded as recessive,
broad stress, lifetime depression, OR 1.25, P= 0.02). In all other
analyses, the interaction term was not even nominally significant.
We evaluated the heterogeneity for the interaction terms in all

the previous analyses. Supplementary Table S4 lists the I2 and Q
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Figure 1. Forest plots for the four key factors for the first model listed in Table 1. (a) Sex: odds ratio (OR)= 0.57, p= 1.4e-15; (b) stress: OR= 2.16,
p= 1.7e-8; (c) gene: OR= 1.00, p= 0.95; (d) gene × Stress: OR= 1.05, p= 0.49. This analysis examined the outcome lifetime depression diagnosis
in subjects of all ages based on exposure to childhood maltreatment as the stressor. Sex and stress display significant and consistent effects
across the studies. The main effect of 5-HTTLPR and the interaction between 5-HTTLPR and stress are not significant. MODEL : depression ¼
β0 þ β1 ageð Þ þ β2 sexð Þ þ β3 stressð Þ þ β4 geneð Þ þ β5 gene ´ stressð Þ Depression= lifetime depression diagnosis (never depressed= 0; ever
depressed= 1). Sex (female= 0; male= 1). Stress= childhood maltreatment (not exposed= 0; exposed= 1). Gene (additive coding in number
of S alleles for 5-HTTLPR (LL= 0; LS= 1; SS= 2)).
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heterogeneity statistics along with the P-value for the Q statistic
for all the primary and secondary meta-analyses in the subsequent
tables, demonstrating that there is generally little evidence for
heterogeneity in these analyses. In particular, secondary analyses
refining the diagnostic criteria and the study design did not
substantially decrease the heterogeneity.
Cumulatively, these primary and secondary results exclude a

strong, broadly generalisable interaction effect reported in
Caspi et al.15

DISCUSSION
A hallmark of science is the ability of results to be replicated, a
criterion that has been increasingly recognised in biological and
psychological research.66 The original 2003 report of an interac-
tion between 5-HTTLPR genotype and stress exposure on
depression15 has remained controversial owing to inconsistent
results from replication efforts. Although some researchers have
claimed a replication of the hypothesised interaction based on
different stressors, different measures of depression or different
genetic models,24,25 other attempts to replicate the finding have
been negative.22,23,67 The goal of our study was to rigorously
explore the extent to which the original report could be replicated
and generalised using a structured collaborative meta-analysis.
This is the largest study to date to use consistent statistical

analyses across all samples to examine the hypothesised
interaction between 5-HTTLPR genotype and stress exposure
affecting major depression. As detailed in our protocol, our design
was based on consistent, de novo analyses chosen by a consensus
of participating researchers in the field, with inclusion open to all
researchers with published or unpublished data that met objective
minimum participation criteria. The purpose was to address
multiple issues of concern about previous meta-analyses of the
topic: (i) heterogeneity of phenotypes, (ii) publication bias from
small studies, (iii) heterogeneity of statistical models used to
produce the input for the meta-analysis, (iv) meta-analysis models
that did not take direction of effect into account.
Neither our primary nor our secondary analyses found

compelling evidence that the 5-HTTLPR S allele increases risk of
major depression in individuals exposed to stress. These results
are in marked contrast to the robust main-effect signals seen for
the sex and stress exposure, where P-valueso10− 60 were seen in
our most inclusive primary analyses (Supplementary Table S12). In
our effort to determine conditions for which the interaction might
be reliably detected, we investigated both childhood maltreat-
ment and other life experiences as stressors. Because major
depression is a recurring and remitting disease subject to recall
bias, both current depression and lifetime depression were
examined. Data from subjects of any age and data limited to
young adults were both studied. We examined life stress known to
precede depression (thereby limiting the sample to studies that
documented the relative timing of stress and depression) and we
investigated whether the hypothesised interaction could be more
effectively detected using all available data with stress and
depression assessed. In secondary analyses, we also examined
multiple models for the coding of the genotype (additive,
dominant, recessive, haplotypes) as well as broad and narrow
requirements for documentation of temporal order of the stress
experience and the onset of depression. Despite these efforts, we
were unable to uncover specific subgroups where the G× E
interaction was clearly expressed.
The Caspi group that originally proposed the hypothesis15

raised concerns regarding this meta-analysis project; in particular,
the decisions to exclude small studies, and to include lifetime
depression as an outcome for analysis were criticised.68 As noted
in our methods, although we required studies to have at least 300
participants overall, inclusion in any particular meta-analysis
required only 50 of these subjects to be genotyped and have

the appropriate phenotypes (ancestry, depression outcome,
covariates). Although Moffitt and Caspi argue that small studies
may be meticulously designed and have high quality data,68 there
is a case to be made that large studies are generally likely to have
better design quality than small studies.69 In addition, small
studies are subject to multiple statistical issues, including
publication bias (exacerbated for small studies) and the winner’s
curse (which makes it likely, even if a true effect is detected, that
the magnitude will be exaggerated).70 In fact, a 2013 analysis of
neuroscience publications concluded that small sample size
studies were undermining the reliability of neuroscience.69

The concern Moffitt and Caspi raised regarding the inclusion of
lifetime depression analyses was the difficulty of knowing the
relative timing of stress and depression for a lifetime phenotype.
Rather than omit these analyses of lifetime depression, as
suggested by Moffitt and Caspi, we included analyses where
timing information was specifically queried as well as analyses
where it was not specifically queried. We recognise that these
data, like all data, have limitations, but nonetheless we find the
results informative. We note that of all the models examined in
our de novo analyses, the only results with nominally significant
interaction terms in the hypothesised direction were based on
lifetime depression outcomes. Finally, based on parameter
estimates provided in the supplement to their seminal paper,15

we can estimate the impact those data would have on both our
young adult and all-age analyses involving depression diagnoses
with a quantitative life stress variable. We found that none of
these analyses were nominally significant even after adding the
Caspi et al.15 results to the meta-analyses.
The decision by some invited groups not to participate is a

limitation of this project. It is becoming increasingly clear that
large samples are an important tool for determining the role of
genetic variation in complex phenotypes, such as depression.
Combining existing data is an efficient tool for this purpose. We
expect that in the future data sharing will become the rule rather
than the exception. We are encouraged by the fact that data
sharing is becoming a requirement of funding agencies and a
requirement for publication by some journals. Although we would
have preferred complete participation, several factors mitigate the
impact that this likely had on our results. First, the phenotypes for
several of the non-participating groups turned out to be
insufficient for inclusion in any of our primary or secondary
analyses. Second, several of the non-participating groups had
exclusively Asian samples, which would not have impacted the
European ancestry results. Finally, we found that some data
reported in the large prior meta-analyses as supportive of the
interaction were not supportive when all were analysed using the
same statistical model for all studies.
Although our consortium tested many high-priority combina-

tions of factors (see Supplementary Table S2), there remain other
specific situations that we were unable to evaluate, such as
limiting analyses to stress over a period shorter than five years, to
financial stress,71 to persistent or recurrent depression28,72 or to
childhood emotional abuse/neglect only.73 Using data from a
diverse set of studies, most designed to address other questions, is
also a limitation. However, we note that many of the participating
studies, despite their diversity, have already been cited in the
literature either in support of, or against, the hypothesised
interaction.
Our novel contribution is to apply a consistent methodology

across the participating studies to query a broad range of
questions about the hypothesised interaction. Although these
studies remain varied in their original design, our unified approach
to phenotype harmonisation and statistical analysis has provided a
sound and comprehensive exploration of this challenging
question. We have addressed and excluded the major objections
(exclusion of small studies, inclusion of analyses of lifetime
depression) to our protocol raised by Caspi and Moffitt.
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Our findings do not support the interaction hypothesis. We
found no subgroups or variable definitions for which an
interaction between stress and 5-HTTLPR genotype was statisti-
cally significant. In contrast, our findings for the main effects of sex
(strong risk factor), life stressors (strong risk factor) and 5-HTTLPR
genotype (no impact on risk) are strikingly consistent across the
models examined in this study. Moreover, these robust main-
effect results are consistent with the main-effect results from the
Caspi study that originally reported the interaction,15 with the re-
examination of the topic using primary data by Risch et al.,22 and
with prior meta-analyses.22–25 Based on our findings, we conclude
that if an interaction exists in which the S allele of 5-HTTLPR
increases risk of depression only in stressed individuals, then it is
not a broadly generalisable effect, but must be of modest effect
size and only observable in limited situations. Our lack of
replication coincides with findings of the Christchurch Health
and Developmental Study,67 a prospective longitudinal birth-
cohort, with measures, outcomes and sample (both size and origin
on the south island of New Zealand) nearly identical to the original
report. This lack of evidence for a strong, robust effect should be
taken into account before planning future research on this topic.
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